Źródłem ciepła wykorzystywanego przez TEG do generowania energii elektrycznej może być zarówno strumień ciepła kierowany do odbiorników, jak i ciepło odpadowe. Zastosowanie TEG zwiększa więc ogólną efektywność energetyczną systemu oraz ogranicza zapotrzebowanie na energię nieodnawialną.
![]() |
Rys. 1. Strumienie energii w typowym systemie cieplnym
(góra) i z wykorzystaniem TEG (dół) do produkcji
energii pomocniczej; rys. autora |
Właściwe wykorzystanie TEG pozwala na częściowe lub całkowite uniezależnienie systemu cieplnego od zewnętrznego zasilania w energię elektryczną (rys. 1). Można dzięki nim zbudować w pełni funkcjonalny kocioł gazowy, węzeł ciepłowniczy czy układ solarny, który nie wymaga podłączenia do zewnętrznego zasilania elektrycznego.
Czytaj też: Zapotrzebowanie na moc cieplną i energię użytkową do podgrzania ciepłej wody użytkowej – metody obliczeń >>>
Obecnie szeroko podejmowane się próby zabudowy w urządzeniach cieplnych układów zasilających TEG [1, 2, 3]. W prototypach osiągano moce elektryczne rzędu 240, a nawet 500 W. Ogniwa TEG są dostępne na rynku światowym, jednak brakuje wytycznych ich wykorzystania w systemach cieplnych oraz charakterystyk pozwalających projektować takie układy zasilające. Przeprowadzono badania własne kilku typów ogniw TEG pod kątem ich charakterystyk termoelektrycznych i możliwości wykorzystania w systemach cieplnych.
Generatory termoelektryczne TEG
W ogniwach TEG efekt termoelektryczny jest zjawiskiem związanym z wzajemnością procesów elektrycznych i cieplnych w metalach, przewodnikach i półprzewodnikach [4].
Do grupy zjawisk termoelektrycznych zalicza się zjawisko Peltiera, zjawisko Thomsona i zjawisko Seebecka. Ogólnie dotyczą one obwodu złożonego z dwóch elementów przewodzących, na którego złączach pod wpływem różnicy temperatury generowana jest siła elektromotoryczna w postaci prądu stałego (rys. 2). Obwody połączone w grupy i ograniczone płytkami ceramicznymi tworzą tzw. ogniwo termoelektryczne lub generator termoelektryczny TEG (rys. 3).
![]() |
![]() |
Rys. 2. Zasada pracy generatora TEG; rys. autora | Rys. 3. Budowa generatora TEG [5]; rys. autora |
W seryjnie produkowanych ogniwach TEG wykorzystywane są elementy półprzewodnikowe wykonane z tellurku bizmutu (Bi2Te3) lub tellurku ołowiu (PbTe). Połączone zespoły elementów półprzewodnikowych ograniczone są okładkami ceramicznymi z aluminy (tlenku glinu Al2O3) umożliwiającymi dostarczenie ciepła po jednej stronie generatora i odebranie po drugiej. Spomiędzy płytek generatora wyprowadzone są przewody elektryczne. Wymiary typowych ogniw to: 30×30 mm, 40×40 mm, 50×50 mm i 56×56 mm.
Metodyka badań ogniw TEG
![]() |
Tabela 1. Badane generatory termoelektryczne TEG |
Wstępnym etapem przygotowań do budowy zespołu zasilającego system cieplny w pomocniczą energię elektryczną z ogniw TEG jest określenie rzeczywistych parametrów termoelektrycznych wybranych ogniw w danych warunkach cieplnych. Do badań wytypowano sześć modeli generatorów termoelektrycznych dostępnych na rynku (tabela 1), dla których sporządzono charakterystyki termoelektryczne. Opisują one zależność generowanej w ogniwie mocy elektrycznej, natężenia prądu oraz napięcia dla określonych różnic temperatury po obu stronach ogniwa. Badania przeprowadzano w kontrolowanych warunkach temperaturowych i elektrycznych. Na okładkach ogniw utrzymywano określone temperatury dla strony ciepłej i zimnej, monitorując jednocześnie parametry prądu elektrycznego generowanego przez badane ogniwo TEG w zmiennych warunkach obciążenia elektrycznego. Pomiary wykonano dla różnicy temperatury DT po obu stronach ogniwa TEG od 5 do 80°C, zmieniając w sposób powtarzalny obciążenie elektryczne ogniwa dla każdej z ustalonych DT.
Wyniki badań
Podstawowe charakterystyki termoelektryczne analizowanych ogniw TEG przedstawiono na rys. 4, rys. 5, rys. 6, rys. 7, rys 8 i rys. 9 jako zależność maksymalnej mocy elektrycznej ogniwa od różnicy temperatury DT na ciepłej i zimnej okładce TEG. Badania wykonywano w dwóch wariantach montażu ogniw pod kątem doprowadzania i odprowadzania ciepła: z wykorzystaniem przewidzianej przez producenta warstwy grafitu na okładkach TEG oraz po zastąpieniu jej pastą termoprzewodzącą w celu zintensyfikowania wymiany ciepła.
![]() |
![]() |
Rys. 4. Maksymalna moc elektryczna ogniwa TEC1-12730 | Rys. 5. Maksymalna moc elektryczna ogniwa TEG1-12611-6.0 |
Rys. 6. Maksymalna moc elektryczna ogniwa TEG1-12611-8.0 | Rys. 7. Maksymalna moc elektryczna ogniwa G2-56-0570 |
![]() |
![]() |
![]() |
![]() |
Rys. 8. Maksymalna moc elektryczna ogniwa G2-56-0375 | Rys. 9. Maksymalna moc elektryczna ogniwa G2-56-0352 |
Chcesz być na bieżąco? Czytaj nasz newsletter! |