Wykorzystanie generatorów termoelektrycznych do lokalnego wytwarzania energii pomocniczej w systemach cieplnych

The technology of thermoelectric generators for the local production of auxiliary energy in heating systems
Na rysunku: schemat budowy półprzewodnikowego generatora
termoelektrycznego
Na rysunku: schemat budowy półprzewodnikowego generatora termoelektrycznego
Rys. autorzy (M. Sidorczyk, P. Jadwiszczak)

W ciągu kilku najbliższych lat ciepłownictwo będzie się musiało zmierzyć ze sporymi wyzwaniami. Coraz bardziej restrykcyjne wymagania dotyczące czystości produkcji energii oraz alternatywy w postaci odnawialnych źródeł energii sprawiają, że należy poszukiwać sposobów, które umożliwią utrzymanie konkurencyjności klasycznych form wytwarzania energii cieplnej. Jedną z możliwości, jakie daje współczesna technologia, jest wykorzystanie generatorów termoelektrycznych do lokalnego wytwarzania energii pomocniczej dla systemów cieplnych.

Współczesne wymagania dotyczące efektywności i czystości wytwarzania energii cieplnej stanowią wyzwanie, z którym branża ciepłownicza i grzewcza mierzy się każdego dnia. Coraz ostrzejsze standardy wymagają podjęcia działań, które w przyszłości zapewnią ograniczenie zużycia paliw kopalnych oraz pozwolą wytwarzać energię efektywnie, z jak najmniejszym obciążeniem środowiska. Cele te mogą zostać osiągnięte poprzez poprawę efektywności wykorzystania energii paliw konwencjonalnych, zwiększenie udziału odnawialnych źródeł energii oraz wykorzystanie ciepła odpadowego.

Współczesne systemy cieplne (źródła ciepła, sieci dystrybucji, elementy napędowe, odbiorniki ciepła itd.) wymagają zasilania pomocniczą energią elektryczną. W Polsce energia elektryczna, poza nielicznymi wyjątkami, pochodzi z krajowego systemu energetycznego i wytwarzana jest ze spalania paliw kopalnych ze sprawnością rzędu 40% [1]. Skutecznym sposobem ograniczenia zużycia konwencjonalnej energii elektrycznej pomocniczej z jednoczesnym zwiększeniem efektywności systemów grzewczych jest lokalne wytwarzanie energii elektrycznej z ciepła odpadowego, odnawialnego lub innego strumienia ciepła i jej lokalne wykorzystanie jako energii pomocniczej.

Popularne metody generowanie energii elektrycznej z ciepła opierają się na wykorzystaniu Organicznego Obiegu Rankine’a (ORC) [3, 4], silników Stirlinga [2] oraz generatorów termoelektrycznych (TEG, ang. thermoelectric generator) [7]. Sposób produkcji energii elektrycznej w każdym z tych urządzeń jest inny, inna jest technologia i złożoność systemów (rys. 1), różny jest również potencjał ich stosowania w systemach cieplnych. Najbardziej korzystne z punktu widzenia zastosowania w systemach cieplnych wydają się generatory termoelektryczne.

Główną zaletą TEG, w odróżnieniu od pozostałych rozwiązań, jest możliwość bezpośredniej konwersji energii cieplnej w elektryczną i maksymalne uproszczenie procesu generowania energii elektrycznej. Konwersja jest dokonywana bezpośrednio w generatorze i nie wymaga żadnych dodatkowych urządzeń. Dzięki temu uzyskuje się większą niezawodność całego procesu i ogranicza straty energii na poszczególnych elementach systemu.

Rys. 1. Schemat produkcji energii elektrycznej z ciepła dla układów: a) z turbiną ORC, b) z silnikiem Stirlinga, c) z generatorem termoelektrycznym; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 1. Schemat produkcji energii elektrycznej z ciepła dla układów: a) z turbiną ORC, b) z silnikiem Stirlinga, c) z generatorem termoelektrycznym; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)

Kolejnym atutem jest budowa TEG typu Solid State. Typowe ogniwo TEG ma kształt kwadratowej płytki o wymiarach około 5×5 cm oraz grubości kilku milimetrów. Składa się z wielu połączonych ze sobą par elementów półprzewodnikowych, które odpowiadają za generowanie stałego prądu elektrycznego. W ogniwach TEG nie ma ruchomych części, dzięki czemu są one bezobsługowe i działają bezawaryjnie. Żywotność ogniw producenci określają na 200 tys. godzin ciągłej pracy.

U podstaw działania generatorów termoelektrycznych leży tzw. zjawisko Seebecka. Siłą napędową tego procesu jest różnica temperatur między stroną ciepłą i zimną termogeneratora (rys. 2 - patrz: zdjęcie przy tytule publikacji).

Energia pomocnicza systemów cieplnych

Atrakcyjnym obszarem takich działań są indywidualne źródła ciepła oraz systemy cieplne oparte na odnawialnych źródłach energii. Ogromna liczba tego rodzaju źródeł, zapewniająca efekt skali, skłania do podjęcia poszukiwań lokalnego źródła energii pomocniczej.

Rys. 3. Strumienie energii w konwencjonalnym systemie cieplnym; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 3. Strumienie energii w konwencjonalnym systemie cieplnym; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)

Każdy współczesny system cieplny do prawidłowej pracy wymaga dostarczenia z zewnątrz energii pomocniczej. Najczęściej jest nią energia elektryczna do zasilania sterowników, elementów automatyki, pomp obiegowych, wentylatorów i innych urządzeń niezbędnych do efektywnej pracy urządzenia czy systemu cieplnego.

Rys. 4. Idea wykorzystania generatorów termoelektrycznych w systemie cieplnym przy zastosowaniu ciepła odpadowego do zasilania TEG; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 4. Idea wykorzystania generatorów termoelektrycznych w systemie cieplnym przy zastosowaniu ciepła odpadowego do zasilania TEG; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 5. Idea wykorzystania generatorów termoelektrycznych w systemie cieplnym przy zastosowaniu ciepła odpadowego do zasilania TEG z nadmiarową produkcją energii elektrycznej; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 5. Idea wykorzystania generatorów termoelektrycznych w systemie cieplnym przy zastosowaniu ciepła odpadowego do zasilania TEG z nadmiarową produkcją energii elektrycznej; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 6. Idea wykorzystania generatorów termoelektrycznych w systemie cieplnym przy zastosowaniu ciepła użytecznego do zasilania TEG; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)
Rys. 6. Idea wykorzystania generatorów termoelektrycznych w systemie cieplnym przy zastosowaniu ciepła użytecznego do zasilania TEG; rys. archiwum autorów (M. Sidorczyk, P. Jadwiszczak)

Badania przeprowadzone w [5] wykazały, że w systemach cieplnych wykorzystujących współczesne gazowe kotły kondensacyjne stosunek maksymalnej pobieranej mocy elektrycznej do maksymalnej mocy cieplnej wynosi 1:500. Oznacza to, że urządzenie o mocy cieplnej 20 kW do pracy potrzebuje zasilania 40 W mocy elektrycznej. Energia pomocnicza jest tu niezbędna do zasilania palnika, wentylatora nadmuchowego, pompy obiegowej oraz sterownika. Stosunek ten zachęca do wykorzystania lokalnego ciepła do generowania energii elektrycznej w celu pokrycia lokalnego zapotrzebowania na energię pomocniczą.

Technologia TEG łączy strumienie ciepła i energii elektrycznej w lokalnym systemie cieplnym. Na rys. 3 przedstawiono strumienie energii pierwotnej zawartej w paliwie, pomocniczej energii elektrycznej, ciepła użytecznego i ciepła odpadowego w konwencjonalnym systemie cieplnym jako środowisku umożliwiającym zastosowanie ogniw TEG.

Czytaj też: Modernizacja instalacji klimatyzacyjnej w obiekcie publicznym z wykorzystaniem chłodziarek sorpcyjnych – przykład realizacji >>>

Na rys. 4, rys. 5 i rys. 6 przedstawiono ideę wykorzystania generatorów termoelektrycznych w wybranych konfiguracjach typowego systemu cieplnego.

W każdym przypadku możliwe jest uzyskanie w systemie cieplnym dodatniego bilansu energetycznego.

 

W systemie przedstawionym na rys. 4 ogniwa TEG wykorzystują odpadową energię cieplną do generowania energii elektrycznej na pokrycie lokalnych potrzeb systemu cieplnego. Przy prawidłowo zaprojektowanym module ogniw TEG rozwiązanie to umożliwia całkowicie lokalne zasilanie systemu cieplnego w wymaganą energię pomocniczą. Możliwe jest osiągnięcie samowystarczalności elektrycznej systemu.

Moduł termoelektryczny charakteryzuje się sprawnością rzędu kilku procent, jednak energia cieplna nieprzekształcona w TEG w energię elektryczną może zostać z powrotem wprowadzona do systemu cieplnego lub wykorzystana do innych celów. Ze względu na lokalne wytwarzanie pomocniczej energii elektrycznej eliminuje się konieczność jej przesyłu i towarzyszące temu straty.

W sprzyjających warunkach energetycznych w systemie cieplnym możliwe jest uzyskanie w odpowiednio zwymiarowanym module ogniw TEG produkcji energii elektrycznej przewyższającej lokalne potrzeby systemu (rys. 5 ). Umożliwia to produkcję dodatkowej porcji energii elektrycznej, która może być wykorzystana do innych celów lub sprzedana. Także tutaj energia cieplna, która nie zostanie wykorzystana do konwersji na energię elektryczną, może zostać ponownie wprowadzona do systemu.

Mniej korzystnym, ale w określonych wypadkach uzasadnionym rozwiązaniem jest wykorzystanie do lokalnej produkcji energii elektrycznej w TEG ciepła użytecznego generowanego przez system cieplny (rys. 6). Umożliwia to uzyskanie niezależności zasilania systemu w energię elektryczną kosztem jego efektywności cieplnej.

Chcesz być na bieżąco? Czytaj nasz newsletter!

[energia, sieci ciepłownicze, generatory termoelektryczne, systemy cieplne]

   02.08.2018

Komentarze

(0)

Wybrane dla Ciebie

 


Jak uzyskać do 5000 zł za polecenie instalacji na gaz »

ogrzewanie na gaz


 

Który grzejnik wybrać? Aluminiowy czy stalowy »

grzejniki aluminiowe czy stalowe


 


Zaprojektuj niezawodne instalacje w budynku »

Czy wiesz, jakich błędów unikać przy instalacji? »

zawory antyskażeniowe
jestem na bieżąco » korzystam z udogodnień »

 


 Jak zapewnić skuteczny monitoring parametrów środowiskowych w pomieszczeniach medycznych »

izolacje w instalacji


 


Czy bezdotykowy design stanie się standardem? »

Jak zminimalizować stratę energii w układach wentylacyjnych »
armatura bezdotykowa
jestem na bieżąco » korzystam z udogodnień »

 


Skróć czas montażu i uruchomienia układu mieszającego nawet o 50% »

uklad mieszający projektowanie



Jak zadbać o higienę w miejscach publicznych »

Na której platformie znajdziesz niezbędne narzędzia dla instalatora »
 
jestem na bieżąco » korzystam z udogodnień »

 


Co zrobić kiedy nie możesz pozbyć się wody z wycieku »

wyciek z rury


 


Jaki wybrać płyn do instalcji w przemyśle spożywczym »

Od czego zacząć, gdy chcesz zabezpieczyć hale przemysłowe przed pożarem »
panele fotowoltaiczne ochrona przed pożarem
jestem na bieżąco » korzystam z udogodnień »

 


Jak zabezpieczyć dylatację przed pożarem »

dyletacja

 



Do 77% oszczędności na zużyciu energii »

Z poradnika hydraulika - gdzie kupisz sprawdzony sprzęt »

cichy oszczedny klimatyzator hydraulik
jestem na bieżąco » korzystam z wiedzy »

 


Jakich elemntów potrzebujesz do projektu fotowoltaicznego »

alternatywne zrodla energii


 


Które pompy ściekowe mogą być stosowane na dużej głębokości » Upały dają się we znaki! Co lepsze? Centrala wentylacyjna czy rooftop? »
kanalizacja wentylatory
wiem więcej » poznaj dziś »

 


Czy pompa ciepła się opłaca »

alternatywne zrodla energii


 


Poznaj metody na oszczędność wody »

W czym tkwi sedno w projektowaniu instalacji grzewczej »
produkcja studni wodomierzowych
jestem na bieżąco » korzystam z udogodnień »

 


Co osuszy powierznię do 80 m² »

osuszanie pomieszczeń


 

 


Ekspert Budowlany - zlecenia

Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników naszego portalu... dowiedz się więcej »

Co Szperacz wyszperał ;-)

źle wykonana instalacja

Sztywniactwo i niechlujstwo - zobacz i skomentuj »

Dla tych, którzy szukają bardziej elektryzujących wrażeń Szperacz ma dziś coś specjalnego - rozdzielnia w toalecie.

zaślepka


TV Rynek Instalacyjny


 tv rynek instalacyjny
9/2021

Aktualny numer:

Rynek Instalacyjny 9/2021
W miesięczniku m.in.:
  • - Instalacje PV z magazynami energii
  • - Wentylacja obiektów gastronomicznych
Zobacz szczegóły

Bezpłatny newsletter

Mamy dla Ciebie prezent 


Wystarczy,

że zapiszesz się na newsletter,
a otrzymasz link do

e-book

" Kotły na biomasę i biopaliwa "

Zapisuję się »

Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright © 2011 - 2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl