RynekInstalacyjny.pl

Kogeneracja – czy i komu się opłaca?

Analiza wrażliwości NPV i DPBT

Analiza wrażliwości NPV i DPBT

W artykule omówiono powody stosowania kogeneracji opartej na paliwach gazowych, przedstawiono zasadę działania i korzyści płynące z tego rozwiązania. Przeanalizowano konkretny przypadek zastosowania kogeneracji. Przedstawiono również obliczenia opłacalności wybudowania instalacji kogeneracyjnej i wskazano sposoby finansowego wsparcia inwestycji.

Zobacz także

FLOWAIR Sprawdź, jak prześcigniesz konkurencję dzięki SYSTEMOWI FLOWAIR

Sprawdź, jak prześcigniesz konkurencję dzięki SYSTEMOWI FLOWAIR Sprawdź, jak prześcigniesz konkurencję dzięki SYSTEMOWI FLOWAIR

Jeżeli na co dzień zarządzasz zespołem, z pewnością wiesz, że warunki panujące w pomieszczeniach bezpośrednio przekładają się na jakość i wydajność pracy. To samo dotyczy logistyki i zarządzania towarami...

Jeżeli na co dzień zarządzasz zespołem, z pewnością wiesz, że warunki panujące w pomieszczeniach bezpośrednio przekładają się na jakość i wydajność pracy. To samo dotyczy logistyki i zarządzania towarami – musisz o nie zadbać, aby podczas składowania nie straciły swoich właściwości.

ADEY Innovation SAS ADEY – optymalna ochrona systemu grzewczego

ADEY – optymalna ochrona systemu grzewczego ADEY – optymalna ochrona systemu grzewczego

ADEY jest wiodącym producentem filtrów magnetycznych oraz środków chemicznych stosowanych w systemach grzewczych do ich ochrony i poprawy efektywności pracy. Produkty ADEY przyczyniają się jednocześnie...

ADEY jest wiodącym producentem filtrów magnetycznych oraz środków chemicznych stosowanych w systemach grzewczych do ich ochrony i poprawy efektywności pracy. Produkty ADEY przyczyniają się jednocześnie do ochrony środowiska naturalnego, z dużym naciskiem na poprawę jakości powietrza (umożliwiają obniżenie emisji CO2 o ok. 250 kg rocznie z pojedynczego gospodarstwa domowego).

Alfa Laval Efektywna wymiana ciepła to kwestia nowoczesnych rozwiązań w wymienniku ciepła a nie tylko powierzchni grzewczej

Efektywna wymiana ciepła to kwestia nowoczesnych rozwiązań w wymienniku ciepła a nie tylko powierzchni grzewczej Efektywna wymiana ciepła to kwestia nowoczesnych rozwiązań w wymienniku ciepła a nie tylko powierzchni grzewczej

Światowe zapotrzebowanie na energię nie staje się coraz mniejsze – wręcz przeciwnie. W nadchodzących latach coraz trudniej będzie utrzymać konkurencyjność, ponieważ firmy na każdym rynku i w każdej branży...

Światowe zapotrzebowanie na energię nie staje się coraz mniejsze – wręcz przeciwnie. W nadchodzących latach coraz trudniej będzie utrzymać konkurencyjność, ponieważ firmy na każdym rynku i w każdej branży poszukują nowych sposobów maksymalizacji wydajności przy jednoczesnym obniżeniu kosztów energii i udoskonaleniu swojego wizerunku w zakresie ochrony środowiska. Wyzwania te będą złożone i wieloaspektowe.

W artykule:

• Ochrona środowiska i zwrot w kierunku źródeł rozproszonych
• Ceny energii i nadchodzące wyzwania
• Kogeneracja oparta na paliwie gazowym

Ochrona środowiska i zwrot w kierunku źródeł rozproszonych

Energia stanowi podstawowy i nieodłączny czynnik zarówno ludzkiej egzystencji, jak i prowadzonej przez człowieka działalności gospodarczej. Ambitne cele nakreślone w Europejskim Zielonym Ładzie [4], zobowiązujące państwa Unii Europejskiej do osiągnięcia neutralności klimatycznej w ciągu najbliższych 30 lat, wymuszają działania prowadzące do stopniowego odchodzenia od paliw kopalnych na rzecz odnawialnych źródeł energii. Jednocześnie podejmowane są działania mające na celu poprawę lokalnej jakości powietrza zanieczyszczonego produktami spalania paliw stałych, co przekłada się na zmianę cen energii.

Mając na uwadze wciąż zaostrzające się normy ochrony środowiska, przedsiębiorcy coraz częściej decydują się na budowanie proekologicznego wizerunku poprzez ograniczenie emisji dwutlenku węgla. Popularnym wskaźnikiem oceny przedsiębiorstw oraz dostarczanych przez nich towarów i usług staje się tzw. ślad węglowy (ang. carbon footprint). Ślad węglowy towarzyszący wytworzeniu danego produktu jest sumą gazów cieplarnianych wyemitowanych na każdym etapie produkcji i transportu danego wyrobu. Zwiększa się liczba przedsiębiorców, którzy wymagają od swoich partnerów biznesowych i kontrahentów przedstawienia udokumentowanej wielkości śladu węglowego, a w razie potrzeby również jego redukcji. Ze względu na fakt, że energetyka zawodowa jest w dalszym ciągu oparta w znacznym stopniu na paliwach stałych, polskie przedsiębiorstwa już na starcie wypadają gorzej w rywalizacji z konkurentami z większości krajów Unii.

Emisyjność energii elektrycznej pobranej z sieci krajowej wynosi ok. 765 kg CO2/MWh, co stanowi w przybliżeniu dwukrotność emisji w większości państw UE.

Alternatywą dla dużej, wysokoemisyjnej energetyki zawodowej są mniejsze, niskoemisyjne źródła rozproszone. Przedsiębiorcy świadomi nadchodzących wyzwań coraz częściej decydują się na montaż instalacji fotowoltaicznych. Instalacje takie są wprawdzie bezemisyjne, jednak ich zdolność do pokrycia zapotrzebowania na energię nie przekracza zwykle 10%. Zmniejszenie emisji gazów cieplarnianych kształtuje się na tym samym poziomie co pokrycie zapotrzebowania na energię.

Uzupełnieniem niesterowalnych źródeł odnawialnych są stabilne źródła wytwórcze oparte na spalaniu paliw o niższej emisyjności, takich jak gaz ziemny, biogaz, biopaliwa, propan-butan oraz gazy odpadowe. Ważne jest, żeby źródła takie były źródłami kogeneracyjnymi, tzn. produkowały zarówno energię elektryczną, jak i ciepło. Energia produkowana w skojarzeniu ma zwykle emisyjność niższą niż 450 kg CO2/MWh, czyli znacznie mniejszą niż emisyjność systemu krajowego.

Inwestycje w małe kogeneracyjne źródła wytwórcze oparte na gazie ziemnym i biogazie wpisują się w krajową oraz unijną politykę energetyczną. Już obecnie stanowią one znaczącą pozycję w polityce energetycznej wielu przedsiębiorstw na kilka najbliższych lat.

Ceny energii nadchodzące wyzwania

Równie ważnym motorem napędowym rozwoju energetyki rozproszonej jest niemal dwukrotny wzrost cen energii w ciągu ostatnich kilku lat. Analitycy są zgodni co do utrzymania trendu wzrostowego w przyszłości. Warto dodać, że ze względu na przeważający w Polsce model zakupu energii elektrycznej (stała cena przez cały okres obowiązywania umowy) nawet spadki cen giełdowych nie przyczyniają się do zmniejszenia rachunków za energię. Średnia cena energii elektrycznej dla większości odbiorców przekroczyła 300 zł/MWh, dla niektórych nawet 400 zł/MWh netto. Proporcjonalnie rosną również koszty zmienne dystrybucji energii elektrycznej, które obecnie w zależności od taryfy wynoszą od 40 do 90 zł/MWh netto. Przy tak wysokich cenach energii sieciowej rosną także koszty produkcji lub świadczenia usług, a inwestycja we własne źródło wytwórcze staje się wysoce opłacalna. Wzrost cen energii elektrycznej w przypadku sprzedaży nadmiaru energii wyprodukowanej we własnym źródle stanowi dodatkową korzyść.

Warto zwrócić uwagę na sytuację, która miała miejsce w czerwcu 2020 r. Splot kilku wydarzeń związanych z warunkami atmosferycznymi (silne opady), awariami instalacji oczyszczania spalin oraz dostarczeniem do elektrowni paliwa o wysokiej wilgotności sprawił, że z systemu wypadło kilka bloków pracujących w podstawie [1]. Na skutek braku odpowiedniej ilości mocy do pokrycia zapotrzebowania cena energii elektrycznej na giełdzie zaliczyła historyczny wzrost – do prawie 1300 zł/MWh. Sytuacja ta, była trudna do przewidzenia i przedsiębiorcy nie byli w stanie podjąć odpowiednio szybko środków zaradczych. Odpowiedzią na tego typu problemy jest autoprodukcja i autokonsumpcja energii z własnego źródła.

Również ceny ciepła sieciowego w ciągu ostatnich kilku lat wzrosły o ok. 20–30% i nic nie wskazuje na ich spadek w kolejnych latach. Przestarzałe ciepłownictwo zawodowe stoi obecnie przed olbrzymimi wyzwaniami związanymi z prowadzeniem koniecznych inwestycji w celu spełnienia coraz bardziej restrykcyjnych norm ochrony środowiska i konkluzji BAT (ang. Best Available Technology). W przeciwieństwie do sektora produkcji energii elektrycznej w ciepłownictwie nie ma obecnie praktycznych możliwości stosowania na szeroką skalę rozwiązań OZE. Transformacja tego sektora planowana jest na wiele lat i raczej nie należy się spodziewać rychłego spadku cen ciepła.

Kogeneracja oparta na paliwie gazowym

Najpopularniejszą technologią wykorzystywaną do wytwarzania energii elektrycznej w małych jednostkach kogeneracyjnych są rozwiązania oparte na silnikach tłokowych zasilanych gazem (ziemnym lub biogazem). Pojedyncze jednostki osiągają moc elektryczną w przedziale 50 kWe – 5 MWe. Istnieje możliwość łączenia kilku jednostek w większe układy, tak aby zwiększyć ich moc oraz elastyczność pracy. Na rys. 1 przedstawiono uproszczony schemat modułu kogeneracyjnego wykorzystującego silnik tłokowy.

Schemat modułu kogeneracyjnego

Rys. 1. Schemat modułu kogeneracyjnego opartego na silniku tłokowym

W skład tego układu, poza silnikiem tłokowym podłączonym do generatora energii elektrycznej, wchodzą dwa systemy odbioru ciepła. Pierwszy system odzyskuje ciepło z chłodzenia korpusu silnika (chłodnicy oleju), a drugi z ciepła spalin wylotowych. W większości rozwiązań parametry odzyskanego ciepła wynoszą 90/70°C. Ciepło spalin może być wykorzystane bezpośrednio, np. w procesie suszenia lub produkcji pary wodnej.

Zastosowanie silników tłokowych w układach kogeneracyjnych ma szereg zalet, są nimi:

  • wysoka sprawność produkcji energii elektrycznej w szerokim zakresie mocy, tzn. także podczas prac z niepełnym obciążeniem,
  • możliwość szybkiego uruchomienia i uzyskania mocy nominalnej,
  • możliwość zastosowania w miejscach oddalonych od sieci,
  • duża różnorodność paliw,
  • stosunkowo niskie nakłady inwestycyjne.

Przykładowe parametry modułu o mocy elektrycznej 1 MWe zestawiono w tabeli 1.

Przykładowe parametry modułu

Tab. 1. Przykładowe parametry modułu kogeneracyjnego o mocy elektrycznej 1 MWe

W układach o mocy elektrycznej 1 MWe i większych stosunek produkcji energii elektrycznej do ciepła wynosi blisko 1. W mniejszych układach produkcja energii elektrycznej jest więcej niż produkcja ciepła.

Wspomniany stosunek produkcji energii elektrycznej do ciepła, zwany również stopniem skojarzenia, w dużym stopniu determinuje opłacalność zastosowania kogeneracji w przedsiębiorstwie. Podstawowymi parametrami, od których zależy opłacalność inwestycji, są roczny stopień autokonsumpcji energii elektrycznej oraz stopień wykorzystania ciepła. Obydwa te parametry są powiązane stopniem skojarzenia produkcji.

Małe układy kogeneracyjne dobiera się tak, aby wykorzystanie produkowanego ciepła było jak najwyższe. Żeby zagwarantować odbiór ciepła, moc cieplna układu powinna być zbliżona do minimalnego rocznego zapotrzebowania na to medium.

Innymi słowy, jeżeli ciepło zużywane jest w przedsiębiorstwie w głównej mierze na cele grzewcze, to produkcja modułu powinna być zbliżona do zapotrzebowania na ciepło w miesiącach letnich. Wynika to z ograniczonych możliwości sprzedaży nadmiaru produkowanego ciepła. Układy kogeneracji oparte na silniku tłokowym są w stanie zapewnić także produkcję pary o praktycznie dowolnych parametrach. Ilość pary możliwa do wyprodukowania zależy od wymaganego ciśnienia pary oraz ilości ciepła przenoszonego przez gazy spalinowe. W uproszczeniu można przyjąć, że dla układów o mocy elektrycznej powyżej 1 MWe moc możliwa do odzyskania w parze stanowi od 30 do 50% mocy cieplnej układu. Pozostała część może zostać odzyskana w postaci gorącej wody.

Inaczej przedstawia się sytuacja w przypadku energii elektrycznej, której nadmiar można wprowadzić do sieci elektroenergetycznej i sprzedać. Należy jednak pamiętać, że cena, jaką można otrzymać za wprowadzoną energię, będzie niższa od ceny energii kupowanej z sieci. Istotne jest zatem, aby jak najwięcej energii elektrycznej zużywane było na miejscu. Dodatkowym plusem autokonsumpcji energii wytworzonej w przedsiębiorstwie jest oszczędność kosztów dystrybucji, które ponosi się, pobierając energię z sieci. Przy koszcie zakupu energii elektrycznej 350 zł/MWh netto oraz koszcie dystrybucji 60 zł/MWh netto łączny koszt poboru energii z sieci wynosi ponad 500 zł/MWh brutto.

Przedsiębiorstwa, w których można uzyskać wysoką autokonsumpcję energii elektrycznej, cechują się stosunkowo płaskim profilem zużycia energii elektrycznej, tzn. niewielką różnicą pomiędzy doliną a szczytem zapotrzebowania. Obiektami, w których system kogeneracji sprawdza się najlepiej, są m.in. przedsiębiorstwa produkcyjne pracujące w systemie trzyzmianowym, hotele, baseny i centra SPA, kampusy uniwersyteckie, zakłady z branży spożywczej i hodowlanej oraz przemysłowe czy szpitale.

Produkcja chłodu z ciepła

Jak wspomniano powyżej, moduły kogeneracyjne dobiera się zazwyczaj na zużycie ciepła w miesiącach letnich. W okresie tym ciepło zużywane jest zwykle jedynie w procesach technologicznych oraz do przygotowania ciepłej wody użytkowej.

Równocześnie wiele typów obiektów wykazuje w miesiącach letnich zapotrzebowanie na chłód na potrzeby klimatyzacji lub do celów produkcyjnych. Rozwiązaniem zwiększającym zapotrzebowanie na ciepło z układu oraz obniżającym zapotrzebowanie na energię elektryczną latem jest zastosowanie agregatów absorpcyjnych. Agregaty absorpcyjne produkują chłód, zużywając do jego produkcji ciepło w postaci ciepłej wody lub pary. Produkowane w agregatach kogeneracyjnych ciepło o parametrach 90/70°C idealnie nadaje się do wykorzystania w agregatach absorpcyjnych produkujących chłód na cele klimatyzacji. Ciepło to można również wykorzystać w pewnym zakresie do chłodzenia technologicznego. Sprawność klimatyzacyjnych agregatów absorpcyjnych zasilanych ciepłą wodą mieści się w przedziale 0,65–0,85. Zastosowanie ciepła do produkcji chłodu pozwala na lepsze wykorzystanie modułów kogeneracyjnych, a także ich optymalne dopasowanie. Układ kogeneracyjny wyposażony w agregat absorpcyjny nazywamy trigeneracją. Jej zastosowanie jest dość powszechne w obiektach przemysłowych, hotelach, basenach czy szpitalach.

Dobór układu kogeneracyjnego – studium przypadku

Aby zobrazować ideę doboru układu kogeneracji gazowej, przedstawiono studium przypadku na przykładzie małego przedsiębiorstwa produkcyjnego. Obecnie zakład zasilany jest w energię elektryczną z sieci elektroenergetycznej, a w ciepło z kotłów gazowych. Uporządkowany wykres rocznego zapotrzebowania na energię elektryczną przedstawiono na rys. 2. Maksymalny pobór energii elektrycznej w analizowanym obiekcie wynosi ok. 200 kW, a minimalny poniżej 50 kW. Profil zapotrzebowania, nie licząc kilkuset godzin w ciągu roku, jest płaski i mieści się w zakresie od 75 do 150 kW.

Wykres uporządkowany zapotrzebowania

Rys. 2. Wykres uporządkowany zapotrzebowania analizowanego obiektu na moc elektryczną

Na rys. 3 zobrazowano miesięczne zapotrzebowanie na gaz ziemny na potrzeby produkcji ciepłej wody użytkowej i centralnego ogrzewania. Profil ten jest charakterystyczny dla zużycia gazu na cele grzewcze oraz do przygotowania ciepłej wody użytkowej. Zużycie gazu jest wyższe od zużycia energii elektrycznej. Średnia moc pobierana w miesiącach letnich wynosi ok. 100 kWh/h.

zapotrzebowanie na gaz

Rys. 3. Wykres zapotrzebowania na gaz w analizowanym obiekcie

Przy doborze układu kogeneracyjnego zakłada się, że planowane przestoje serwisowe będą miały miejsce w miesiącach letnich, kiedy występuje najmniejsze zapotrzebowania na ciepło. Do powyższych profili dobrano agregat kogeneracyjny zasilany gazem ziemnym o mocy elektrycznej 104 kWe oraz mocy cieplnej 142 kWth. Sprawność całkowita układu wynosi 87%, a zużycie gazu przy pełnym obciążeniu 282 kWh/h. Przy zakładanym dla takich układów rocznym czasie pracy równym 8000 h produkcja energii elektrycznej wynosi 832 MWh, z czego ok. 800 MWh zostanie zużyte na miejscu, a 32 MWh sprzedane do sieci. Roczna produkcja ciepła wyniesie 1136 MWh, z czego 1022 MWh zostaną wykorzystane, a reszta stanowi stratę związaną z niedopasowaniem produkcji do zużycia. Zużycie gazu wyniesie 2256 MWh. Biorąc pod uwagę stopień autokonsumpcji energii elektrycznej (96%) oraz wykorzystania ciepła (90%), układ został dobrany prawidłowo.

Przykład realizacji – czy to się opłaca?

Podejmując decyzję o inwestycji w agregat kogeneracyjny o mocy odpowiedniej dla analizowanego przypadku, trzeba się liczyć z wydatkiem rzędu 625 tys. zł. Nakłady inwestycyjne w tej kwocie obejmują dostawę i montaż silnika i wymienników ciepła oraz wszystkie niezbędne prace budowlane. Koszty związane z eksploatacją układu będą obejmować zakup paliwa oraz bieżący serwis i okresowe remonty. Eksploatacja własnego źródła wiąże się z koniecznością wnoszenia opłat środowiskowych, w szczególności za emisję gazów cieplarnianych. Koszty niezwiązane bezpośrednio z eksploatacją, które trzeba będzie ponieść, to ubezpieczenie oraz podatek od nieruchomości.

Korzyściami płynącymi z eksploatacji agregatu są brak konieczności zakupu pewnej ilości energii elektrycznej i ciepła oraz sprzedaż nadwyżki energii elektrycznej poprzez sieć elektroenergetyczną. Dodatkową korzyścią może być również uzyskanie wsparcia finansowego, które omówiono w dalszej części opracowania.

Analizę przeprowadzono w dwóch wariantach. W pierwszym założono brak wsparcia, w drugim natomiast uwzględniono premię gwarantowaną w wysokości 149,99 zł/MWh. Przyjęto cenę energii elektrycznej na poziomie 450 zł/MWh (zakup) oraz 240 zł/MWh (sprzedaż). Założona cena gazu to 140 zł/MWh. Finansowanie inwestycji odbywa się z udziałem wkładu własnego oraz kredytu. Stopa dyskonta równa jest średnioważonemu kosztowi kapitału i wynosi 9%. Założono roczną inflację na poziomie 2,5%. Okres budowy wynosi 2 lata, a eksploatacji 15 lat. W połowie okresu eksploatacji przeprowadzany jest remont kapitalny. Wyniki analizy zestawiono w tabeli 2.

Zestawienie wskaźników rentowności

Tab. 2. Zestawienie wskaźników rentowności inwestycji

W obydwu analizowanych przypadkach wskaźniki rentowności wskazują, że inwestycja jest opłacalna. Wartość bieżąca netto jest dodatnia, natomiast wewnętrzna stopa zwrotu wyższa od założonej stopy dyskonta. W wariancie bez mechanizmu wsparcia zdyskontowany okres zwrotu wynosi nieco ponad 6 lat, natomiast z premią gwarantowaną skraca się do ok. 4,5 roku. Analizy prowadzone przez autorów wskazują również, że inwestycje w układy o wyższych mocach charakteryzują się krótszymi czasami zwrotu, co wynika z efektu skali – zmniejszenia jednostkowych nakładów inwestycyjnych oraz jednostkowych kosztów eksploatacji.

Inwestycja jest wysoce opłacalna przy przyjętych wyżej założeniach. Nie jest natomiast wolna od ryzyka zmian, które mogą wystąpić w trakcie eksploatacji lub budowy układu. Z tego względu analiza ekonomiczna wariantu z premią gwarantowaną została uzupełniona o analizę wrażliwości inwestycji na cztery parametry: cenę energii elektrycznej, cenę gazu, wielkość nakładów inwestycyjnych oraz cenę ciepła. Parametry te zmieniano w zakresie od –25% do +25% zakładanej wartości. W każdym przypadku wartość bieżąca netto (NPV) była dodatnia, a wewnętrzna stopa zwrotu wyższa niż zakładana stopa dyskonta. Okres zwrotu (DPBT) zawierał się w przedziale 3,5–5,5 roku. Wskaźniki rentowności są najbardziej wrażliwe na zmiany cen energii elektrycznej i gazu, a najmniej na wielkość nakładów inwestycyjnych i cenę ciepła. Na rys. 4 przedstawiono przebieg zmian tych wskaźników w zależności od zmiany ceny energii elektrycznej.

Analiza wrażliwości

Rys. 4. Analiza wrażliwości NPV i DPBT na zmianę ceny energii elektrycznej

Dodatkowo wykonano obliczenia pokazujące, w jaki sposób kształtowała się emisja CO2 w okresie przed oraz po wybudowaniu i eksploatacji układu kogeneracyjnego. W obliczeniach uwzględniono zużycie gazu przez układ, wyprodukowaną energię elektryczną oraz ciepło sieciowe, którego kupna uniknięto. Przyjęto emisyjność energii elektrycznej z sieci na poziomie 765 kg CO2/MWh oraz ciepła sieciowego 94,96 kg CO2/GJ. Przy podanych założeniach emisja CO2 została zmniejszona o więcej niż połowę, co oznacza znaczącą redukcję śladu węglowego przedsiębiorstwa. Wyniki zestawiono w tabeli 3.

Wielkość emisji CO2

Tab. 3. Wielkość emisji CO2 przed i po budowie układu kogeneracyjnego

Jakie wsparcie można otrzymać?

Podejmując inwestycję w wysokosprawną kogenerację, można liczyć na wsparcie z dostępnych mechanizmów systemowych. Obejmuje ono zarówno dotację dla poniesionych nakładów inwestycyjnych, jak i dopłatę do wytworzonej albo sprzedanej energii elektrycznej.

Aktualnie trwa nabór w konkursie „Energia odnawialna, efektywność energetyczna, bezpieczeństwo energetyczne. Rozwój wysokosprawnej kogeneracji przemysłowej” prowadzonym przez Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej. Poziom dofinansowania obejmuje 45% kosztów kwalifikowanych. Minimalna kwota dofinansowania wynosi 1 mln euro, a maksymalna 7 mln euro. Konkurs skierowany jest do małych, średnich i dużych przedsiębiorstw. Wnioski można składać do 31 sierpnia 2020 r.

Wsparcie w postaci premii gwarantowanej, kogeneracyjnej lub kogeneracyjnej indywidualnej zapewnia ustawa z dnia 14 grudnia 2018 r. o promowaniu energii elektrycznej z wysoko­sprawnej kogeneracji [2]. Mogą je otrzymać jednostki, których emisyjność jest niższa niż 450 kg CO2/MWh. W przypadku jednostek o mocy elektrycznej niższej niż 1 MWe premia gwarantowana wynosi 144,99 zł dla każdej wyprodukowanej megawatogodziny energii elektrycznej. Dla jednostek od 1 do 50 MWe premia kogeneracyjna ustalana jest w wyniku aukcji. Zgodnie z wynikami ostatnich aukcji zawiera się ona w przedziale 60–100 zł/MWh. Jednostki o mocy powyżej 50 MWe mogą liczyć na wsparcie w postaci premii kogeneracyjnej indywidualnej, której wysokość ustalana jest indywidualnie, w drodze naboru. Wsparcie w tym przypadku obejmuje energię elektryczną wyprodukowaną, wprowadzoną do sieci i sprzedaną. Udziela się go na 15 lat.

W przypadku jednostek o mocy powyżej 1 MWe funkcjonuje dodatkowo jeden warunek uzyskania wsparcia: ciepło produkowane w jednostce kogeneracyjnej musi być w 70% wprowadzane do miejskiej sieci ciepłowniczej. Wsparcie obejmuje wówczas 100% wyprodukowanej energii elektrycznej – w przeciwnym wypadku proporcjonalnie mniej.

Literatura

  1. Derski Bartłomiej, Zasuń Rafał, Zalało elektrownię. Prąd po 1300 zł/MWh, www.wysokienapiecie.pl (dostęp: czerwiec 2020).
  2. Ustawa z dnia 14 grudnia 2018 r. o promowaniu energii elektrycznej z wysokosprawnej kogeneracji (DzU 2019, poz. 42).
  3. Gurgacz Sebastian, Grudzień Anna, Wsparcie dla małych i średnich ciepłowni. Efektywne systemy ciepłownicze i walka ze smogiem, „Rynek Instalacyjny” 4/2019, rynekinstalacyjny.pl.
  4. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_pl (dostęp: 8.07.2020).

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

dr hab. inż. Paweł Michnikowski Ocena sposobu rozliczania kosztów ogrzewania lokalu w budynku wielorodzinnym na podstawie indywidualnego rachunku

Ocena sposobu rozliczania kosztów ogrzewania lokalu w budynku wielorodzinnym na podstawie indywidualnego rachunku Ocena sposobu rozliczania kosztów ogrzewania lokalu w budynku wielorodzinnym na podstawie indywidualnego rachunku

Na podstawie indywidualnego rachunku za dostarczoną energię cieplną można dokonać oceny poprawności obliczenia zużycia ciepła w lokalu mieszkalnym i tym samym weryfikacji naliczonych opłat.

Na podstawie indywidualnego rachunku za dostarczoną energię cieplną można dokonać oceny poprawności obliczenia zużycia ciepła w lokalu mieszkalnym i tym samym weryfikacji naliczonych opłat.

Materiały PR Co to jest kocioł pulsacyjny?

Co to jest kocioł pulsacyjny? Co to jest kocioł pulsacyjny?

Kocioł pulsacyjny to wysokiej klasy gazowe urządzenie grzewcze, pracujące w technologii połączenia kondensacji z pulsacyjnym systemem spalania. Kocioł pulsacyjny, czyli pulsator zamiast tradycyjnego palnika...

Kocioł pulsacyjny to wysokiej klasy gazowe urządzenie grzewcze, pracujące w technologii połączenia kondensacji z pulsacyjnym systemem spalania. Kocioł pulsacyjny, czyli pulsator zamiast tradycyjnego palnika ma komorę spalania, do której doprowadzona jest mieszanka gazowo-powietrzna. Czym się różni pulsator od tradycyjnych kotłów grzewczych?

Materiały PR Jakie są wady i zalety wentylacji mechanicznej?

Jakie są wady i zalety wentylacji mechanicznej? Jakie są wady i zalety wentylacji mechanicznej?

Każdy budynek musi mieć odpowiednią wentylację. Jej zadanie polega na filtrowaniu i wymianie zużytego powietrza na nowe, co jest konieczne przy oddychaniu osób przebywających w danych budynku. Co więcej,...

Każdy budynek musi mieć odpowiednią wentylację. Jej zadanie polega na filtrowaniu i wymianie zużytego powietrza na nowe, co jest konieczne przy oddychaniu osób przebywających w danych budynku. Co więcej, wentylacja potrzebna jest także wszystkim sprzętom znajdującym się w pomieszczeniu, aby mogły prawidłowo funkcjonować. Dlatego wentylacja musi dobrze spełniać swoje zadanie. System wentylacji mechanicznej zapewnia niezależne od warunków pogodowych stałe dostarczanie świeżego powietrza do pomieszczeń...

dr inż. Grzegorz Krzyżaniak, prof. dr hab. Halina Koczyk Zapotrzebowanie na moc cieplną i energię użytkową do podgrzania ciepłej wody użytkowej – metody obliczeń

Zapotrzebowanie na moc cieplną i energię użytkową do podgrzania ciepłej wody użytkowej – metody obliczeń Zapotrzebowanie na moc cieplną i energię użytkową do podgrzania ciepłej wody użytkowej – metody obliczeń

Celem artykułu jest omówienie i porównanie najczęściej stosowanych metod obliczeń zapotrzebowania na moc cieplną i energię użytkową do podgrzania ciepłej wody wymagających różnych danych wyjściowych, takich...

Celem artykułu jest omówienie i porównanie najczęściej stosowanych metod obliczeń zapotrzebowania na moc cieplną i energię użytkową do podgrzania ciepłej wody wymagających różnych danych wyjściowych, takich jak: ilość i rodzaj armatury w punktach poboru, liczba mieszkańców czy normatywne ilości wody dla różnych punktów poboru.

dr inż. Anna Życzyńska, mgr inż. Grzegorz Dyś Wpływ OZE na wskaźnik energii pierwotnej w budynkach mieszkalnych

Wpływ OZE na wskaźnik energii pierwotnej w budynkach mieszkalnych Wpływ OZE na wskaźnik energii pierwotnej w budynkach mieszkalnych

Jednym z warunków, jakie stawia się budynkom w przepisach techniczno-budowlanych, jest spełnienie wymagań w zakresie wskaźnika zapotrzebowania na nieodnawialną energię pierwotną. W zależności od rodzaju...

Jednym z warunków, jakie stawia się budynkom w przepisach techniczno-budowlanych, jest spełnienie wymagań w zakresie wskaźnika zapotrzebowania na nieodnawialną energię pierwotną. W zależności od rodzaju budynku przepisy wymagają uwzględnienia tylko potrzeb na cele ogrzewania i przygotowania ciepłej wody (budynki mieszkalne bez chłodzenia) albo dodatkowo energii na potrzeby oświetlenia wbudowanego (budynki inne niż mieszkalne) oraz energii na chłodzenie, jeżeli takie zapotrzebowanie występuje.

mgr inż. Katarzyna Rybka Wymienniki ciepła

Wymienniki ciepła Wymienniki ciepła

Wysoka efektywność działania systemu grzewczego lub chłodniczego to cel, do którego każdy projektant czy instalator powinien dążyć. Wymiennik ciepła jest urządzeniem, bez którego znaczna większość instalacji...

Wysoka efektywność działania systemu grzewczego lub chłodniczego to cel, do którego każdy projektant czy instalator powinien dążyć. Wymiennik ciepła jest urządzeniem, bez którego znaczna większość instalacji różnego rodzaju, w tym wodnych, nie miałaby prawa działać. Mimo że są to dość proste w obsłudze urządzenia, nawet pozornie nieistotne szczegóły i niedociągnięcia wpływają na spadek ich efektywności.

Jerzy Chodura Niezbędnik instalatora słonecznych systemów grzewczych cz. 11

Niezbędnik instalatora słonecznych systemów grzewczych cz. 11 Niezbędnik instalatora słonecznych systemów grzewczych cz. 11

W XI części cyklu publikacji autor pisze o instalacjach do przygotowywania ciepłej wody użytkowej (standardowym schemacie instalacji, instalacjach solarnych z z dwoma zasobnikami i z buforem ciepła) oraz...

W XI części cyklu publikacji autor pisze o instalacjach do przygotowywania ciepłej wody użytkowej (standardowym schemacie instalacji, instalacjach solarnych z z dwoma zasobnikami i z buforem ciepła) oraz o instalacjach do przygotowywania c.w.u. i wspomagania ogrzewania (warunkach brzegowych ogrzewania solarnego i rozwiązaniach technologicznych).

dr inż. Andrzej Górecki Instalacje ogrzewcze – przepisy, trwałość, odpowiedzialność

Instalacje ogrzewcze – przepisy, trwałość, odpowiedzialność Instalacje ogrzewcze – przepisy, trwałość, odpowiedzialność

Zagadnienia trwałości i sprawności instalacji ogrzewczych były przedmiotem wielu artykułów. Jednak większość instalacji c.o. (oraz innych układów zamkniętych) wciąż nie spełnia wymagań, które powinny zagwarantować...

Zagadnienia trwałości i sprawności instalacji ogrzewczych były przedmiotem wielu artykułów. Jednak większość instalacji c.o. (oraz innych układów zamkniętych) wciąż nie spełnia wymagań, które powinny zagwarantować im 50-letnią trwałość oraz komfort użytkowania pomieszczeń, a także prawidłowe rozliczanie kosztów ogrzewania.

Grupa Armatura Koniec rur przy grzejniku

Koniec rur przy grzejniku Koniec rur przy grzejniku

Nowy grzejnik aluminiowy G500 F/D wychodzi naprzeciw potrzebom związanym z tym trendem. Dzięki nowemu sposobowi przyłączenia, doprowadzające wodę rury pozostają niewidoczne.

Nowy grzejnik aluminiowy G500 F/D wychodzi naprzeciw potrzebom związanym z tym trendem. Dzięki nowemu sposobowi przyłączenia, doprowadzające wodę rury pozostają niewidoczne.

Redakcja RI Pompy ciepła - rynek, szkolenia, perspektywy

Pompy ciepła - rynek, szkolenia, perspektywy Pompy ciepła - rynek, szkolenia, perspektywy

Rośnie liczba instalowanych pomp ciepła, zwiększa się jakość projektów i montowanych instalacji. Sprzyjają temu szkolenia dla instalatorów i nowe wymagania dla budynków w zakresie efektywności energetycznej...

Rośnie liczba instalowanych pomp ciepła, zwiększa się jakość projektów i montowanych instalacji. Sprzyjają temu szkolenia dla instalatorów i nowe wymagania dla budynków w zakresie efektywności energetycznej i korzystania z energii odnawialnej. Za kilka lat pompy ciepła mogą być najczęściej stosowanymi urządzeniami do zasilania instalacji c.o. i c.w.u. w nowych obiektach.

dr inż., arch. Karolina Kurtz-Orecka, inż. Agata Taudul Nowa charakterystyka energetyczna – przewodnik po normach cz. 2.Obliczenia słonecznych zysków ciepła

Nowa charakterystyka energetyczna – przewodnik po normach cz. 2.Obliczenia słonecznych zysków ciepła Nowa charakterystyka energetyczna – przewodnik po normach cz. 2.Obliczenia słonecznych zysków ciepła

Przy określaniu charakterystyki energetycznej budynku słoneczne zyski ciepła obliczane są jedynie dla przezroczystych elementów zbierających obudowy, z pominięciem wpływu powierzchni nieprzezroczystych....

Przy określaniu charakterystyki energetycznej budynku słoneczne zyski ciepła obliczane są jedynie dla przezroczystych elementów zbierających obudowy, z pominięciem wpływu powierzchni nieprzezroczystych. Przy przyjęciu miesięcznego kroku obliczeniowego może to prowadzić do znacznego niedoszacowania zapotrzebowania na energię do celów chłodzenia.

mgr inż. Ilona Czerkawska, mgr inż. Bartosz Cyba Nocne obniżenia temperatury w halach basenowych

Nocne obniżenia temperatury w halach basenowych Nocne obniżenia temperatury w halach basenowych

W wielu obiektach basenowych stosuje się nocne obniżenia temperatury, co w okresie zimowym może powodować wzrost ryzyka wykraplania się wilgoci na zimnych przegrodach. Ryzyko to minimalizuje się, stosując...

W wielu obiektach basenowych stosuje się nocne obniżenia temperatury, co w okresie zimowym może powodować wzrost ryzyka wykraplania się wilgoci na zimnych przegrodach. Ryzyko to minimalizuje się, stosując nawiew szczelinowy ciepłym powietrzem, który tworzy kurtynę osłaniającą przegrody. Korzystniejsze z punktu widzenia wystąpienia ryzyka kondensacji jest obniżenie wilgotności względnej w okresie nocnym. Natomiast względy eksploatacyjne (koszty uzdatniania powietrza) przemawiają za utrzymywaniem...

mgr inż. Jerzy Żurawski, dr inż. Arkadiusz Węglarz Charakterystyka energetyczna budynku według nowych wymagań prawnych

Charakterystyka energetyczna budynku według nowych wymagań prawnych Charakterystyka energetyczna budynku według nowych wymagań prawnych

W styczniu 2014 zaczęły obowiązywać nowe warunki techniczne, jakim powinny odpowiadać budynki, natomiast w lipcu br. opublikowano nowelizację rozporządzenia w sprawie metodologii obliczania charakterystyki...

W styczniu 2014 zaczęły obowiązywać nowe warunki techniczne, jakim powinny odpowiadać budynki, natomiast w lipcu br. opublikowano nowelizację rozporządzenia w sprawie metodologii obliczania charakterystyki energetycznej budynku (świadectw charakterystyki energetycznej budynku). We wrześniu 2014 r. Prezydent RP „rzutem na taśmę” podpisał ustawę o charakterystyce energetycznej budynków, która zacznie obowiązywać za kilka miesięcy – trzeba będzie w związku z tym ponownie opublikować wspomniane rozporządzenie....

dr inż. Ryszard Śnieżyk Praca centralnego ogrzewania w mieszkaniu zasilanym gazowym kotłem kondensacyjnym

Praca centralnego ogrzewania w mieszkaniu zasilanym gazowym kotłem kondensacyjnym Praca centralnego ogrzewania w mieszkaniu zasilanym gazowym kotłem kondensacyjnym

W artykule przeanalizowano sprawność eksploatacyjną dostawy ciepła do instalacji c.o. z gazowego kotła kondensacyjnego obliczoną na podstawie pomiarów wykonanych w lokalu zamieszkałym przez trzy osoby....

W artykule przeanalizowano sprawność eksploatacyjną dostawy ciepła do instalacji c.o. z gazowego kotła kondensacyjnego obliczoną na podstawie pomiarów wykonanych w lokalu zamieszkałym przez trzy osoby. Na podstawie dostępnych informacji nie można było ocenić zmiennych potrzeb przygotowania c.w.u. oraz wahania zapotrzebowania na energię instalacji c.o. Charakter pracy gazowego kotła kondensacyjnego wymaga dostosowania chwilowej mocy do zmiennego zapotrzebowania. Ważnym aspektem jest również dobór...

dr inż. Łukasz Amanowicz, prof. dr hab. inż. Janusz Wojtkowiak Ilościowy opis równomierności rozdziału powietrza w wielorurowych gruntowych wymiennikach ciepła

Ilościowy opis równomierności rozdziału powietrza w wielorurowych gruntowych wymiennikach ciepła Ilościowy opis równomierności rozdziału powietrza w wielorurowych gruntowych wymiennikach ciepła

Gruntowe wymienniki ciepła będą coraz częściej stosowane jako elementy instalacji wentylacji mechanicznej pozwalające na wstępne podgrzanie powietrza wentylacyjnego zimą i schłodzenie latem [4, 5, 7, 9]....

Gruntowe wymienniki ciepła będą coraz częściej stosowane jako elementy instalacji wentylacji mechanicznej pozwalające na wstępne podgrzanie powietrza wentylacyjnego zimą i schłodzenie latem [4, 5, 7, 9]. Już obecnie stosowanie GWC jest w niektórych przypadkach konieczne, np. w celu spełnienia wymagań stawianym inwestycjom ubiegającym się o dofinansowanie ze środków NFOŚiGW przeznaczonych na budowę domów energooszczędnych [6, 10]. W projektowaniu i doborze wielorurowych GWC istotną rolę odgrywa równomierność...

Instytut Energetyki Odnawialnej (IEO) Rynek biomasy stałej w UE (2011-2012). Raport

Rynek biomasy stałej w UE (2011-2012). Raport Rynek biomasy stałej w UE (2011-2012). Raport

W latach 2011-2012 ilość wykorzystanej energii pierwotnej zawartej w biomasie stałej zaczęła ponownie wzrastać, osiągając poziom 82,3 miliona ton oleju ekwiwalentnego (Mtoe), czyli o 4,2 Mtoe więcej w...

W latach 2011-2012 ilość wykorzystanej energii pierwotnej zawartej w biomasie stałej zaczęła ponownie wzrastać, osiągając poziom 82,3 miliona ton oleju ekwiwalentnego (Mtoe), czyli o 4,2 Mtoe więcej w porównaniu do roku ubiegłego. W 2011 roku wyjątkowo łagodna zima przyczyniła się do znacznego zmniejszenia ilości wykorzystanej biomasy, co zahamowało niezakłócony od 1999 roku rozwój tego rynku. Rok 2012 przyniósł poprawę koniunktury we wszystkich sektorach wykorzystujących biomasę stałą do produkcji...

dr hab. inż. Katarzyna Gładyszewska-Fiedoruk, dr inż. Dorota Anna Krawczyk, Andrzej Gajewski, prof. dr hab. inż. Józefa Wiater Badanie komfortu cieplnego w salach dydaktycznych przed modernizacją Cz. 2. Eksperyment

Badanie komfortu cieplnego w salach dydaktycznych przed modernizacją Cz. 2. Eksperyment Badanie komfortu cieplnego w salach dydaktycznych przed modernizacją Cz. 2. Eksperyment

Komfort cieplny w pomieszczeniach definiowany jest jako stan, w którym człowiek przebywający w pomieszczeniu nie odczuwa ani ciepła, ani zimna. W poprzednim artykule (RI 10/2013) opisano parametry komfortu,...

Komfort cieplny w pomieszczeniach definiowany jest jako stan, w którym człowiek przebywający w pomieszczeniu nie odczuwa ani ciepła, ani zimna. W poprzednim artykule (RI 10/2013) opisano parametry komfortu, poniżej omówione zostały wyniki badań parametrów jakości powietrza wewnętrznego w obiekcie szkolnym: temperatury, wilgotności względnej i stężenia CO2.

dr inż. Piotr Jadwiszczak Równoważenie hydrauliczne modernizowanej instalacji c.o.

Równoważenie hydrauliczne modernizowanej instalacji c.o. Równoważenie hydrauliczne modernizowanej instalacji c.o.

Termomodernizacja budynku wielorodzinnego zmienia termiczne i hydrauliczne warunki pracy istniejącej instalacji centralnego ogrzewania. Dotychczasowa moc cieplna, układ ciśnień, regulacja i równoważenie...

Termomodernizacja budynku wielorodzinnego zmienia termiczne i hydrauliczne warunki pracy istniejącej instalacji centralnego ogrzewania. Dotychczasowa moc cieplna, układ ciśnień, regulacja i równoważenie hydrauliczne stają się nieaktualne i nieskuteczne. Wymagane są zmiany dostosowujące c.o. do pracy w nowych warunkach. Dla zapewnienia poprawnej, komfortowej i energooszczędnej pracy konieczne jest ponowne równoważenie hydrauliczne istniejącej instalacji c.o.

Ilario Vigani Kogeneracja z zastosowaniem bezolejowych mikroturbin

Kogeneracja z zastosowaniem bezolejowych mikroturbin Kogeneracja z zastosowaniem bezolejowych mikroturbin

Skojarzone wytwarzanie ciepła i energii elektrycznej, nazywane również kogeneracją, jest jednoczesną produkcją dwóch rodzajów energii – ciepła i energii elektrycznej – z jednego źródła paliwa. Wytwarzanie...

Skojarzone wytwarzanie ciepła i energii elektrycznej, nazywane również kogeneracją, jest jednoczesną produkcją dwóch rodzajów energii – ciepła i energii elektrycznej – z jednego źródła paliwa. Wytwarzanie dwóch rodzajów energii z jednego źródła jest wydajne, oszczędne i korzystne dla środowiska. Bezolejowe mikroturbiny pozwalają na zmianę natężenia zasilania w cyklu dzień-noc oraz lato-zima, co jest zaletą w porównaniu do standardowych silników stosowanych w branży hotelarskiej i spa.

dr inż. Jacek Biskupski Wykorzystanie kolektorów słonecznych do produkcji c.w.u. i c.o. przy zastosowaniu automatyki BMS

Wykorzystanie kolektorów słonecznych do produkcji c.w.u. i c.o. przy zastosowaniu automatyki BMS Wykorzystanie kolektorów słonecznych do produkcji c.w.u. i c.o. przy zastosowaniu automatyki BMS

Wnioski z kilkunastu lat pracy kilku zestawów kolektorów słonecznych, zarówno płaskich, jak i rurowych, wskazują, że osiągnięcie teoretycznych parametrów pracy podawanych w danych katalogowych jest w praktyce...

Wnioski z kilkunastu lat pracy kilku zestawów kolektorów słonecznych, zarówno płaskich, jak i rurowych, wskazują, że osiągnięcie teoretycznych parametrów pracy podawanych w danych katalogowych jest w praktyce niemożliwe, gdyż odnoszą się one do samego kolektora, a nie całej instalacji – wymaga to uwzględniania przez projektantów przy doborze urządzeń i projektowaniu instalacji. Wraz z rozwojem budownictwa niskoenergetycznego rosnąć będzie znaczenie instalacji solarnych wspomagających pracę układów...

Waldemar Joniec Rynek pomp ciepłaWyniki i trendy

Rynek pomp ciepłaWyniki i trendy Rynek pomp ciepłaWyniki i trendy

Europejski rynek pomp ciepła w latach 2005–2008 rozwijał się w tempie od 10 do 30% rocznie. Po kryzysie w 2009 r. odnotowano spadek o ok. 12% i niewielkie wzrosty w następnych latach. Jaka jest obecnie...

Europejski rynek pomp ciepła w latach 2005–2008 rozwijał się w tempie od 10 do 30% rocznie. Po kryzysie w 2009 r. odnotowano spadek o ok. 12% i niewielkie wzrosty w następnych latach. Jaka jest obecnie sytuacja tego segmentu rynku i co przyniesie mu przyszłość?

dr inż. Michał Strzeszewski Wstępne porównanie sposobu określania mocy szczytowej do ogrzewania budynków wg norm PN-B-03406:1994 PN-EN 12831:2006

Wstępne porównanie sposobu określania mocy szczytowej do ogrzewania budynków wg norm PN-B-03406:1994 PN-EN 12831:2006 Wstępne porównanie sposobu określania mocy szczytowej do ogrzewania budynków wg norm PN-B-03406:1994 PN-EN 12831:2006

Norma PN-EN 12831:2006 [14] zastąpiła w katalogu Polskich Norm dotychczasową normę PN-B-03406:1994 [8]. Norma PN-EN 12831:2006 jest tłumaczeniem „bez wprowadzania jakichkolwiek zmian” normy europejskiej...

Norma PN-EN 12831:2006 [14] zastąpiła w katalogu Polskich Norm dotychczasową normę PN-B-03406:1994 [8]. Norma PN-EN 12831:2006 jest tłumaczeniem „bez wprowadzania jakichkolwiek zmian” normy europejskiej EN 12831:2003 [12]. Norma europejska w wielu miejscach znacząco zmienia dotychczasową metodykę obliczania zapotrzebowania na moc cieplną do ogrzewania budynków, jak również może prowadzić do innych wyników obliczeń. Zmianę tę trudno – zdaniem autora – uzasadnić zdecydowaną przewagą nowego sposobu...

Stefan Żuchowski Technika kondensacyjna. Praktyczne zastosowanie kotłów kondensacyjnych

Technika kondensacyjna. Praktyczne zastosowanie kotłów kondensacyjnych Technika kondensacyjna. Praktyczne zastosowanie kotłów kondensacyjnych

W poprzednich artykułach [1, 2] opisane zostały podstawy techniki kondensacyjnej oraz rozwiązania optymalizujące pracę kotłów. W niniejszej publikacji omówiono stosowanie kotłów kondensacyjnych w praktyce.

W poprzednich artykułach [1, 2] opisane zostały podstawy techniki kondensacyjnej oraz rozwiązania optymalizujące pracę kotłów. W niniejszej publikacji omówiono stosowanie kotłów kondensacyjnych w praktyce.

Jerzy Chodura Prawidłowy montaż instalacji solarnej

Prawidłowy montaż instalacji solarnej Prawidłowy montaż instalacji solarnej

W artykule zamieszczono praktyczne rady dotyczące montażu kolektorów słonecznych, pozwalające uniknąć najczęściej popełnianych błędów.

W artykule zamieszczono praktyczne rady dotyczące montażu kolektorów słonecznych, pozwalające uniknąć najczęściej popełnianych błędów.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - rynekinstalacyjny.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.rynekinstalacyjny.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.rynekinstalacyjny.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.